SGS-THOMSON MICROELECTRONICS

TDA7427

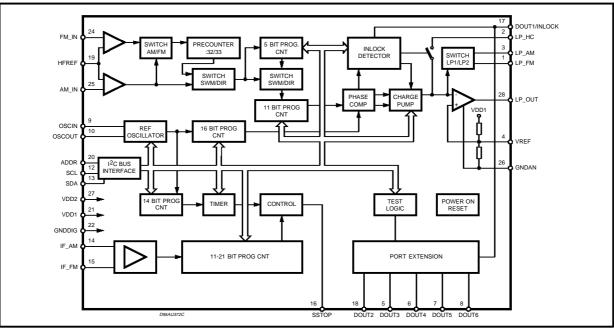
AM-FM RADIO FREQUENCY SYNTHESIZER AND IF COUNTER

ADVANCE DATA

1/25

- ON CHIP REFERENCE OSCILLATOR AND COUNTER
- ON CHIP LOOP FILTER
- VHF INPUT AND PRE-COUNTER FOR UP TO 290MHz (DAB APPLICATION)
- HF INPUT FOR UP TO 64MHz (SW BAND 31m 49m, AM UP-AND DOUBLE CONVERSION)
- XTAL FREQUENCY FROM 4 TO 13MHz (30MHz IN SLAVE MODE)
- FREE PROGRAMMABLE SCANNING STEPS (16 BIT COUNTER)
- TWO SEPARATE FREE PROGRAMMABLE LOOP FILTER APPLICATIONS AVAILABLE
- TUNING VOLTAGE OUTPUT 0.5 TO 11V
- PROGRAMMABLE CURRENT SOURCES TO SET THE LOOP GAIN
- INLOCK DETECTOR
- IF COUNTER FOR FM, AM, AM UP CON-VERSION
- VARIABLE SAMPLING TIME VALUES
- ADJUSTABLE CENTER FREQUENCY VALUES
- ON CHIP POWER-ON-RESET

BLOCK DIAGRAM (28 pin version)

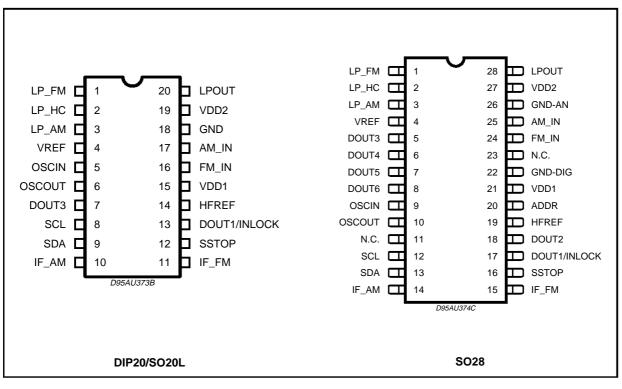

STANDBY MODE

MinimumMinimumMinimumDIP20SO20SO28ORDERING NUMBER: TDA7427 (DIP20)
TDA7427D (SO20)
TDA7427D1 (SO28)

- I²C BUS INTERFACE
- UP TO 6 SWITCH OUTPUTS: 5 OPEN COL-LECTOR, 1 PUSH-PULL

DESCRIPTION

The TDA7427 is a PLL frequency synthesizer with an additional IF-counting system that performs all the function of a PLL radio tuning system for conventional and RDS tuners including the IF-counter for the search stop function.


July 1996

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

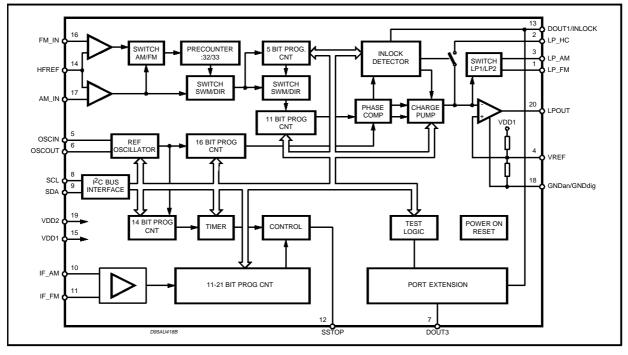
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		
V _{DD1} - V _{SS}	Supply Voltage	- 0.3 to + 7	V	
V_{DD2} - V_{SS}	Supply Voltage	- 0.3 to + 12	V	
V _{IN}	Input Voltage	VSS - 0.3 to V _{DD} + 0.3	V	
Vout	Output Voltage	VSS - 0.3 to V _{DD} + 0.3	V	
l _{IN}	Input Current	- 10 to + 10	mA	
I _{OUT}	Output Current	- 10 to + 10	mA	
P _{tot}	Total Power Dissipation	300	mW	
T _{stg}	Storage Temperature	- 55 to + 125	°C	
T _{amb}	Ambient Temperature	-40 to + 85	°C	

PIN CONNECTIONS

THERMAL DATA

Symbol	Parameter	DIP 20	SO 20L	SO 28	Unit
Rth j-amb	Thermal Resistance Junction-ambient	100	150	200	°C/W



PIN DESCRIPTION (TDA7427D)

PIN	SYMBOL	DESCRIPTION	INPUT/OUTPUT
1	LP_FM	Filter OPAMP input, charge pump output (FM mode)	
2	LP_HC	Filter OPAMP input, charge pump output (high current mode)	
3	LP_AM	Filter OPAMP input, charge pump output (AM mode)	
4	VREF	OPAMP reference voltage	
5	OSCIN	Oscillator reference clock input	
6	OSCOUT	Oscillator output	
7	DOUT3	Opencollector output	
8	SCL	I ² C bus clock input	Input
9	SDA	I ² C bus data I/O	Input/output
10	IF_AM	IF counter input (AM mode)	Analog input
11	IF_FM	IF counter input (FM mode)	Analog input
12	SSTOP	IF counter result output	Output
13*	DOUT1	Digital output	Push-pull output
13*	INLOCK	Inlock detector output	Output
14	HFREF	HF reference	
15	VDD1	Positive power supply 5V	Supply
16	FM_IN	High frequency input FM	Analog input
17	AM_IN	High frequency input AM	Analog input
18	GND	Analog digital ground	Supply
19	VDD2	Positive power supply 10V	Supply
20	LPOUT	Filter input, change pump output	

* Pin function is userdefined by software

BLOCK DIAGRAM (DIP20/SO20)

PIN DESCRIPTION (TDA7427D1)

PIN	SYMBOL	DESCRIPTION	INPUT/OUTPUT
1	LP-FM	Filter OPAMP input, charge pump output (FM mode)	
2	LP-HC	Filter OPAMP input, charge pump output (high current mode)	
3	LP-AM	Filter OPAMP input, charge pump output (AM mode)	
4	VREF	OPAMP reference voltage	
5	DOUT3	Digital Output	Opencollector output
6	DOUT4	Digital Output	Opencollector output
7	DOUT5	Digital Output	Opencollector output
8	DOUT6	Digital Output	Opencollector output
9	OSC IN	Oscillator ref. clock input	
10	OSCOUT	Oscillator output	
11	N.C.	Not connected	
12	SCL	I ² C bus clock input	Input
13	SDA	I ² C bus data I/O	Input/output
14	IF-AM	IF counter HF input	Analog input
15	IF-FM	IF counter VHF input	Analog input
16	SSTOP	IF counter result output	Output
17*	DOUT1	Digital output	Push-pull output
17*	INLOCK	Inlock detector output	Output
18	DOUT2	Digital Output	Opencollector output
19	HF-REF	HF reference pin	
20	ADDR	I ² C bus address pin	Input
21	VDD1	Positive power supply 5V	Supply
22	GND _{dig}	Digital ground	Supply
23	N.C.	Not connected	
24	FM-IN	High frequency input FM	Analog input
25	AM-IN	High frequency input AM	Analog input
26	GNDan	Analog ground	Supply
27	VDD2	Positive Power Supply 10V	Supply
28	LP-OUT	Filter OPAMP output	

* Pin function is userdefined by software

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_{DD1} = 5V$; $V_{DD2} = 9V$; fosc = 4MHz; unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vdd1	Supply Voltage		4.5	5.0	5.5	V
Vdd2	Supply Voltage			9.0	11	V
IDD1	Supply Current	no output load, f _{osc} = 4MHz		8		mA
IDD2	Supply Current	In Lock		2		mA
IDD1 STB	Supply Current	Standby mode			1	μΑ

RF INPUT (AM_IN, FM_IN)

fiam	Input Frequency AM	Sinus; Vi = 100mV _{rms}	0.5		64	MHz
fiFM	Input Frequency AM	Sinus; Vi = 100mV _{rms}	30		200	MHz
Vimin	Min Input Voltage AM	0.5 to 16MHz (Sinus)			30	mV/rms
Vimax	Max Input Voltage AM	0.6 to 16MHz (Sinus)	600			mV/rms
Vimin	Min Input Voltage FM	70 to 120MHz (Sinus)			30	mV/rms
Vimax	Max Input Voltage FM	70 to 120MHz (Sinus)	600			mV/rms
Zin	Input Impedance FM	fin = 120MHz		3		KΩ
Zin	Input Impedance AM	f _{in} = 12MHz		4		KΩ
	rer (IF AM, IF FM)					
	· _ ··· (···/ ··· , ··/ ···//					
Fiam	Input Frequency AMIF	Sinus; Vi = 100mV _{rms}	0.400		11	MHz
		Sinus; Vi = 100mV _{rms} Sinus; Vi = 100mV _{rms}	0.400		11 11	MHz MHz
Fiam	Input Frequency AMIF					MHz
Fiam Fiam	Input Frequency AMIF Input Frequency FMIF	Sinus; Vi = 100mV _{rms}			11	MHz mV/rms
Fiam Fiam Vimin	Input Frequency AMIF Input Frequency FMIF Min Input Voltage AMIF	Sinus; Vi = 100mV _{rms} Sinus f _{in} = 455kHz			11 30	MHz mV/rms mV/rms
Fiam Fiam Vimin Vimin	Input Frequency AMIF Input Frequency FMIF Min Input Voltage AMIF Min Input Voltage FMIF	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	10		11 30	-
Fiam Fiam Vimin Vimin Vimax	Input Frequency AMIF Input Frequency FMIF Min Input Voltage AMIF Min Input Voltage FMIF Max Input Voltage AMIF	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	10 600	4	11 30	MHz mV/rms mV/rms mV/rms
Fiam Fiam Vimin Vimin Vimax Vimax	Input Frequency AMIF Input Frequency FMIF Min Input Voltage AMIF Min Input Voltage FMIF Max Input Voltage FMIF Max Input Voltage FMIF	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	10 600	4	11 30	MHz mV/rms mV/rms mV/rms mV/rms

BUS INTERFACE

Tj	Noise Suppression Time Constant on SCL, SDA Input		50		ns
fscl	SCL Clock Frequency	0		400	kHz
taa	SCL Low to SDA Data Valid	300			ns
tbuf	Time the Bus Must Be Free for the New Transmission	4.7			μs
thd-sta	START Condition hold Time	4.0			μs
t∟ow	Clock Low Period	4.7			μs
tнigн	Clock High Period	4.0			μs
tsu-sda	Start Condition Setup Time	4.7			μs
thd-dat	Data Input Hold Time	0		1	μs
tsu-dat	Date Input Setup Time	250			ns
tR	SDA & SCL Rise Time		1	1	μs
tF	SDA & SCL Full Time		0.3		μs
tsu-sто	Stop Condition Setup Time	4.7			μs
tон	DATA OUT Time	300			ns

ELECTRICAL CHARACTERISTICS (continued)

Vil	Input Low Voltage		1	V
Vін	Input High Voltage	3		V
l _{IN}	Input Current	-5	+5	μA
V _{OUT}	Output Voltage SDA acknowledge			

OSCILLATOR

tbu	Build Up Time	f _{out} = 4MHz			100	ms
Cin	Internal Capacitance			20		pF
Соит	Internal Capacitance	fosc = 4MHz		20		pF
Zin	Input Impedance	fosc = 4MHz			100	KΩ
Vin	Input Voltage (for Slave Mode)	f _{IN} = 4 to 13MHz (Sinus) capacitance coupling	300		V _{DD}	mV _{pp}
fin	Max Input frequency (for Slave Mode)	$V_{IN} = 600 \text{mV}_{PP}$ (Sinus)	30			MHz

LOOP FILTER INPUT OUTPUT (LP_FM, LP_AM, LP_HC, LP_OUT)

-lin	Input Leakage Current	V _{IN} = GND; PD _{out} = Tristate 1)	-0.1	0.1	μA
lin	Input Leakage Current	VIN = VDD1; PDout = Tristate	-0.1	0.1	μA
Vol	Output Voltage Low	I _{IN} = -0.2mA; V _{DD2} = 10V		0.5	V
Vон	Output Voltage High	I _{OUT} = 0.2mA; VDD2 = 10V	9.5		V
Іоυт	Output Current Sink	V _{DD2} = 10V;	10		mA
Іоит	Output Current Source	Vout = 0.5 to 9.5V	10		mA

DIGITAL OUTPUTS DOUT1/SSTOP

Vol	Output Voltage Low	I _{OUT} = -0.1mA		0.2	V
Vон	Output Voltage High	I _{OUT} = 0.1mA	V _{DDI} *0.2		V

DOUT2 to 6

Ιουτ	Output Leakage Current	Vout = Vdd2	-1		1	μA
Vol	Output Voltage Low	I _{OUT} = -1mA		0.2	0.5	V
Іоит	Output Current Sink	$V_{OUT} = 0.5 \text{ to } 9.5 \text{V};$		1	2	mA
Vон	Output Voltage High				11	V

1) PD = Phase Detector

2.1 GENERAL DESCRIPTION

This circuit contains a frequency synthesizer and a loop filter for an FM and AM radio tuning system. Only a V_{CO} is required to build a complete PLL system. For auto search stop operation an IF counter system is available.

A small signal of the AM and FM V_{CO} can be accepted by the circuit.

For FM and SW application, the counter works in a two stages configuration.

The first stage is a swallow counter with a two modulus (:32/33) precounter.

The second stage is an 11-bit programmable counter.

For LW and MW application, a 16-bit programmable counter is available.

The circuit receives the scaling factors for the programmable counters and the values of the reference frequencies via a l^2C bus interface.

The reference frequency is generated by an internal XTAL oscillator followed by the reference divider. The device can operate with XTAL oscillator between 4 and 13MHz either in master mode and in slave mode.

The reference and step-frequencies are free selectable. (XTLAT frequency divided by an integer value). The outputs signals of the phase detector are switching the programmable current sources. The loop filter integrates their currents to a DC voltage.

The values of the current sources are programmable by 6 bits also received via the I^2C bus. To minimize the noise induced by the digital part of the system, a separate power supply supplies the internal loop filter amplifier. The loop gain can be set for different conditions by setting the current values of the chargepump generator.

2.2 DESCRIPTION OF THE IF-COUNTER SYSTEM

Two separate inputs are available for AM and FM IF signals. The grade of integration is adjustable by six different measuring cycle times.

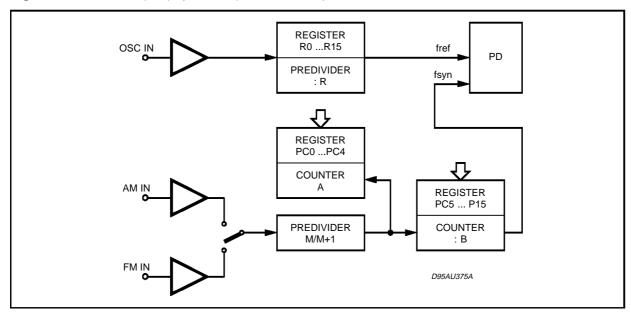
The tolerance of the accepted count value is adjustable, to reach an optimum compromise for search speed and precision of the evaluation.

For the FM range the center frequency of the measured count value is adjustable in 32 steps, to get the possibility of fitting the IF-filter tolerance. In the AM range an IF frequency of 448 to 479KHz (10.684 to 10.715MHz for AM up conversion) with 1KHz steps is available.

3.0 DETAILED DESCRIPTION OF THE DEVICE

3.1 THE PLL FREQUENCY SYNTHESIZER 3.1.1 Input Amplifiers

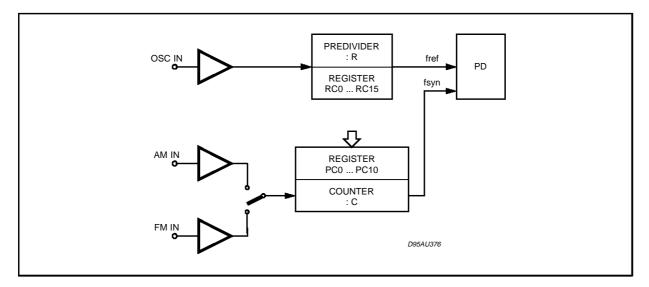
The signals applied on AM and FM input are amplified to get a logic level in order to drive the frequency dividers.


3.1.1.1 Input Impedance

The typical input impedance: for the FM input is $3K\Omega$ and for AM input is $4k\Omega$.

			MS	В					LSB
FUNCTION	SUBAD	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
PLL CHARGE PUMP	00H	LPIN1/2	CURRH	B1	B0	A3	A2	A1	A0
PLL COUNTER	01H	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
PLL COUNTER	02H	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8
PLL REF COUNTER	03H	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PLL REF COUNTER	04H	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8
PLL LOCK DETECT	05H	LDENA	INLOCK	D3	D2	D1	D0	PM1	PM0
IFC REF COUNTER	06H	IRC7	IRC6	IRC5	IRC4	IRC3	IRC2	IRC1	IRC0
IFC REF COUNTER	07H	IFCM1	IFCM0	IRC13	IRC12	IRC11	IRC10	IRC9	IRC8
IFC CONTROL	08H	IFENA	FR3	FR2	FR1	FR0	EW2	EW1	EW0
IFC CONTROL	09H	IFS2	IFS1	IFS0	CF4	CF3	CF2	CF1	CF0
OSC ADJUST	0AH	-	-	-	OSC4	OSC3	OSC2	OSC1	OSC0
PORT EXTENSION	0BH	-	-	DOUT3	DOUT4	DOUT5	DOUT6	DOUT2	DOUT1

3.1 ADDRESS ORGANIZATION


Figure 2: FM and AM (SW) operation (swallow mode)

3.2.2 CONTROL REGISTER FUNCTION

FUNCTION
Programmable counter for VCO frequency
Reference counter PLL
Reference counter IFRC
IF counter Mode
Frequency error window
Enable IFRC
Filter Range IFRC
Center frequency IFRC
Sampling time IFRC
Stby, FM, AM, AM swallow mode
Programmable delay for lock detector
Loop filter input select
PLL stop
Change pump high current
Change pump low current
Lock detector enable
Set current high
Oscillator adjust
Push pull output 5V
Open collector output
Lock detector output

Figure 3: AM direct mode operation for SW, MW and LW

3.1.3 DIVIDER FROM V_{CO} FREQUENCY TO REFERENCE FREQUENCY

This divider provides a low frequency f_{SYN} which is phase compared with the reference frequency f_{REF} . It is controlled by the registers PC0 to PC4 and PC5 to PC15

3.1.4 OPERATING MODE

Four operating modes are available:

PM0	PM1	Operating Mode
0	0	Standby
1	0	AM (swallow)
0	1	AM (direct)
1	1	FM

They are user programmable with the Mode PM registers. (see pag. 17)

Standby mode:

Stops all functions. This allows low current consumption without lost of information in all registers. The pin LP-OUT is forced to 0V. power on all data registers are set to EFh. The oscillator is running.

3.1.4.1 FM and AM (SW) Operation (Swallow Mode)

The FM or AM signal applies a two modulus: 32/33 prescaler, which is controlled by a 5 bit divider 'A'.The 5 bit register (PC0 to PC4) controls this divider. In parallel the output of the prescaler connects a 11 bit divider 'B. (PC5 to PC15). fosc = (R+1) fREF

Dividing range calculation :

 $f_{VCO} = [33 \cdot A + (B + 1 - A) \cdot 32] \cdot f_{REF}$ $f_{VCO} = (32 \cdot B + A + 32) \cdot f_{REF}$

Important: For correct operation A \leq 32, B \geq A, with A and B variable values of the dividers).

AM DIRECT MODE

The AM signal applies directly to the 16 bit static divider 'C'. (PC0 to PC15) $f_{OSC} = (R + 1) \cdot f_{REF}$ Dividing range: $f_{VCO} = (C + 1) \cdot f_{REF}$

3.1.5 THREE STATE PHASE COMPARATOR

The phase comparator generates a phase error signal according to phase difference between f_{SYN} and f_{REF} . This phase error signal drives the charge pump current generator (fig. 4)

3.1.6 CHARGE PUMP CURRENT GENERATOR

This stage generates signed pulses of current. The phase error signal decides the duration and polarity of those pulses.

The current absolute values are programmable by A0, A1, A2 registers for high current and B0, B1, registers for low current.

3.1.7 LOW NOISE CMOS OP-AMP

An internal voltage divider at pin VREF connects the positive input of the low noise Op-Amp The charge pump output connects the negative input. This internal amplifier in cooperation with external components can provide an active filter.

Figure 4: Phase comparator

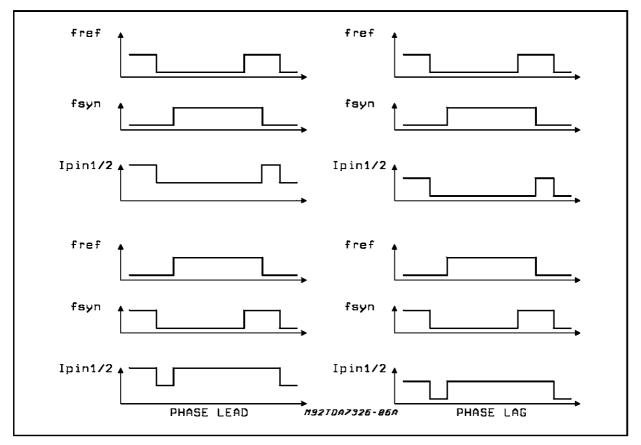
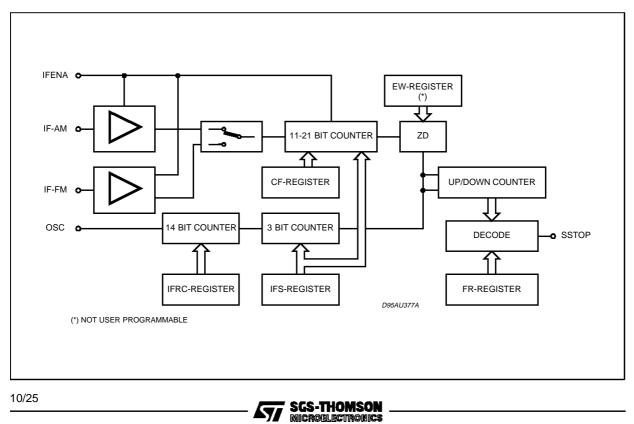



Figure 5: IF Counter

The negative input is switchable to three input pins (LPIN 1, LPIN 2 and LPIN3), to increase the flexibility in application. This feature allows two separate active filters for different applications

A logical "1" in the LPIN1/2 register activates PIN LPIN 1, otherwise PIN LPIN2 is active. While the high current mode is activated LPIN3 is switched on.

3.1.8 INLOCK DETECTOR

The chargepump can be switched in low current mode either via software or automatically by the inlock detector, by setting bit LDENA to "1"

The chargepump is forced in low current mode when a phase difference of 10-40 usec is reached. (Delay of eight times 1/fref)

A phase difference larger then the programmed values will switch the chargepump immediately in the high current mode.

Few programmable delays are available for inlock detection (see pag 11 bits D3 to D0)

3.2 IF COUNTER SYSTEM AM / FM / AM - UPC MODES

The if counter works in 4 modes controlled by **IFCM** register

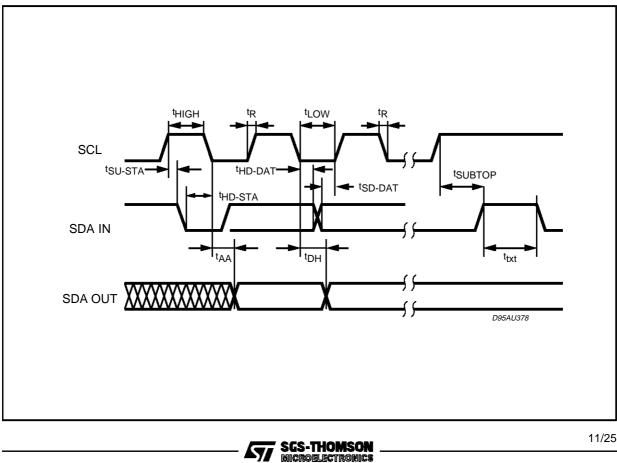


Figure 6: I²C Bus Timing Diagram

IFCM1	IFCM0	FUNCTION
0	0	NOT USED
0	1	FM MODE
1	0	AM MODE
1	1	10.7MHz AM UP CONVERSION MODE

3.2.1 Input Amplifier for the IF-Counter

Two separate amplifiers are generating a logical level. This signal drives the frequency dividers.

3.2.1.1 Input Impedance for the IF-Counter

Typical input impedance for IF-FM input is 4KΩ.

Typical input impedance for IF-AM input is 4KΩ

3.2.2 Description

A sample timer to generate the gate signal for the main counter is build with a 14bit programmable counter to have the possibility to use any crystal oscillator frequency. In FM mode a 6.25KHz, in AM mode a 1KHz signal is generated. This is followed by an asynchronous divider to generate several sampling times (see fig. 5).

Intermediate Frequency Main Counter

This counter is a 11-21 bit synchronous autoreload down counter. Four bits are programmable to have the possibility for an adjust to the frequency of the CF-filter. The counter length is automatically adjusted to the chosen sampling time and the counter mode (AM, FM, AM-UPC).

At the start the counter will be loaded with a defined value which is an equivalent to the divider value($t_{sample} \cdot f_{IF}$).

If a correct frequency is applied to the IF counter frequency inputs IF-AM IF-FM, at the end of the sampling time the main counter is changing its state from 0 h to 1FFFFFh.

This is detected by a control logic. The frequency range inside which a successful count results is detected is adjustable by the bits EW 0,1,2.

Up down counter filter

The information coming from the IF main counter control logic is shifted into a 5bit up down counter circuit clocked by the sampling time signal. At the start (rising edge of the IFENA signal) the counter is set to 10h and the SSTOP signal is forced to "1". Only when the counter reaches the value 10h - step, SSTOP wents to "0". SSTOP will be "1" again, if the counter reaches the value 10h + step.

Counter result succeeded:

 $t_{tim} > t_{cnt} - tERR$ $t_{tim} < t_{cnt} + tERR$

Counter result failed:

 $t_{tim} < t_{cnt} + t_{ERR}$ $t_{tim} > t_{cnt} - t_{ERR}$

where:

 $\begin{array}{l} t_{tim} = \text{IF timer cycle time} \\ t_{cnt} = \text{IF counter cycle time} \\ \text{tERR} = \text{discrimination window (controlled by} \\ \text{the EW registers)} \end{array}$

3.2.2 Adjustment of the Measurement Sequence Time

The precision of the measurements is adjustable by controlling the discrimination window . This is adjustable by programming the control register's EW0...EW2. (see pag. 18) The measurement time per cycle is adjustable by setting the Register IFS0 - IFS2. (see pag 18)

3.2.3 Adjust of the Frequency Value

The center frequency of the discrimination window is adjustable by the control register "CF0" to "CF4". The available values are reported on pag. 19.

5.4 Filter Function

The results of the counter are integrated by a up down counter. The range of this system is adjustable by the data bits "FR0...FR3". (pag 18)

3.2.4 Port Extension and additional Pin functions

20 Pin Version:

One push-pull output (5V) is available in application mode.

This digital output is controlled by the data bit DOUT1.

28 Pin Version:

Max. 5 digital open collector outputs and one digital push-pull outputs are available in application mode. This digital ports are controlled by the data bits DOUT1-DOUT6.

3.3 I²C-BUS INTERFACE

The TDA7327 supports the I²C bus protocol. This protocol defines any device that sends data into the bus as a transmitter, and the receiving device as the receiver. The device that controls the transfer is a master and the device being controlled is the slave. The master will always initiate data transfer and provide the clock to transmit or receive operations. Therefore, the TDA7327 will be considered as a slave receiver or transmitter in all applications.

Data Transition:

Data transition on the SDA line must only occur when the clock SCL is low. SDA transitions while SCL is high will be interpreted as START or STOP condition.

Start Condition:

A start condition is defined by a HIGH to LOW transition of the SDA line while SCL is at a stable HIGH level. This START condition must precede any command and initiate a data transfer onto the bus. The TDA7427 continuously monitors the SDA and SCL lines for a valid START and will not response to any command if this condition has not been met.

Stop Condition:

A STOP condition is defined by a LOW to HIGH transition of the SDA while the SCL line is at a

stable HIGH level. This condition terminate the communication between the devices and force's the bus interface of the TDA7427 into the initial condition.

Acknowledge:

Indicates a successful data transfer. The transmitter will release the bus after sending 8 bit of data. During the 9th clock cycle the receiver will pull the SDA line to LOW level to indicate it has receive the eight bits of data, correctly.

Data transfer:

During data transfer the TDA7427 samples the SDA line on the leading edge of the SCL clock. Therefore, for proper device operation the SDA line must be stable during the SCL LOW to HIGH transition.

3.3.1 Device Addressing

To start the communication between two devices, the bus master must initiate a start instruction sequence, followed by an eight bit word corresponding to the address of the device it is addressing.

The most significant 6 bits of the slave address are the device type identifier.

The TDA7427 frequency synthesizer device type is fixed as "110001"

The next significant bit is used to address a particular device of the previous defined type connected to the bus. The state of the hardwired A0 pin defines the state of this address

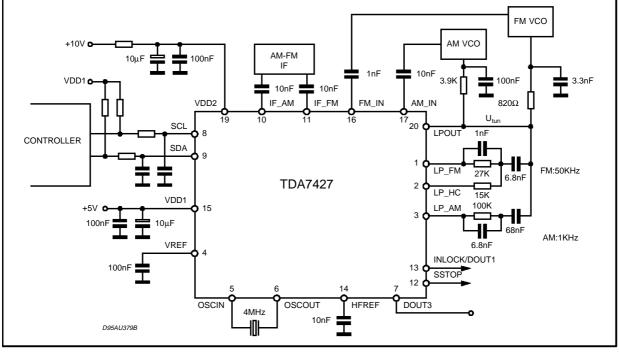
Figure 8: Application with two loopfilter

bit. So up to two devices could be connected on the same bus.

The last bit of the instruction defines the type of operation to be performed:

When set to "1", a read operation is selected
When set to "0", a write operation is selected

The chip selection is accomplished by setting the bit of the chip address to the corresponding status of the A0 input.


All TDA7427 connected to the bus will compare their own hardwired address with the slave address being transmitted.

After this comparison, the TDA7427 will generate an "acknowledge" on the SDA line and will perform either a read or write operation according to the state of R/W bit.

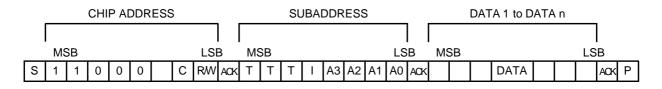
3.3.2 Write Operation

Following a START condition the master sends a slave address word with the R/W bit set to "0". The TDA7427 will "acknowledge" after this first transmission and wait for a second word (the word address field).

This 8 bit address field provides an access to any of the 8 internal addresses. Upon receipt of the word address the TDA7427 slave device will respond with an "acknowledge". At this time, all the following words transmitted to the TDA7427 will be considered as Data. The internal address will be automatically incremented. After each word receipt the TDA7427 will answer with an "acknowledge".

SGS-THOMSON MICROFLECTRONICS

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, (the LSB bit determines

read/write transmission)

- A subaddress byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

ACK = Acknowledge

S = Start

P = Stop

I = Auto Increment

C = chip select

T = used for testing (in application mode they have to be "0")

MAX CLOCK SPEED 500kbits/s

CHIP ADDRESS

MSB LSB							FUNCTION	
1	1	0	0	0	1	С	1	
						0		ADDR pin open
						1		ADDR pin connected to V _{DD} (*)

(*) only with 28 pin version

SUBADDRESS

MSB							LSB	FUNCTION
Т3	T2	T1	_	A3	A2	A1	A0	
				0	0	0	0	Charge pump control
				0	0	0	1	PLL counter 1 (LSB)
				0	0	1	0	PLL counter 2 (MSB)
				0	0	1	1	PLL reference counter 1 (LSB)
				0	1	0	0	PLL reference counter 2 (MSB)
				0	1	0	1	PLL lockdetector control and PLL mode select
				0	1	1	0	IFC reference counter 1 (LSB)
				0	1	1	1	IFC reference counter 2 (MSB) and IFC mode select
				1	0	0	0	IF counter control 1
				1	0	0	1	IF counter control 2
				1	0	1	0	Oscillator adjust
				1	0	1	1	Port extension
			0					page mode off
			1					page mode enabled

T1, T2, T3 used for testing, in application mode they have to be "0"

DATA BYTE SPECIFICATION CHARGEPUMP CONTROL

	EPUMP	CUNIT						
MSB					-		LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
				0	0	0	0	High current = 0mA
				0	0	0	1	High current = 0.5mA
				0	0	1	0	High current = 1.0mA
				0	0	1	1	High current = 1.5mA
				0	1	0	0	High current = 2.0mA
				0	1	0	1	High current = 2.5mA
				0	1	1	0	High current = 3.0mA
				0	1	1	1	High current = 3.5mA
				1	0	0	0	High current = 4.0mA
				1	0	0	1	High current = 4.5mA
				1	0	1	0	High current = 5.0mA
				1	0	1	1	High current = 5.5mA
				1	1	0	0	High current = 6.0mA
				1	1	0	1	High current = 6.5mA
				1	1	1	0	High current = 7.0mA
				1	1	1	1	High current = 7.5mA
		0	0					Low current = $0\mu A$
		0	1					Low current = 15µA
		1	0					Low current = 100µA
		1	1					Low current = 115µA
	0							Select low Current
	1							Select high Current
0								Select loop filter 1
1								Select loop filter 2
LPIN1/2	CURRH	B1	B0	A3	A2	A1	A0	Subaddress = 0

Note:

LOOP FILTER 1 = pin 19 (20pin version); pin 27 (28 pin version) LOOP FILTER 2 = pin 20 (20pin version); pin 28 (28 pin version)

PLL COUNTER 1 (LSB)

MSB		-	-				LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1	1	1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	Bit name subaddress = 1

PLL COUNTER 2 (MSB)

MSB								FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	MSB = 0
0	0	0	0	0	0	0	1	MSB = 256
0	0	0	0	0	0	1	0	MSB = 512
1	1	1	1	1	1	0	0	MSB = 64768
1	1	1	1	1	1	0	1	MSB = 65024
1	1	1	1	1	1	1	0	MSB = 65280
1	1	1	1	1	1	1	1	MSB = 65536
PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	Bit name Subddress = 02H

Swallow mode: fvco/fsyn = LSB + MSB + 32 Direct mode: fvco/fsyn = LSB + MSB + 1

PLL REFERENCE COUNTER 1 (LSB)

MSB				•			LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	0	0	0	0	LSB = 0	
0	0	0	0	0	0	0	1	LSB = 1	
0	0	0	0	0	0	1	0	LSB = 2	
1	1	1	1	1	1	0	0	LSB = 252	
1	1	1	1	1	1	0	1	LSB = 253	
1	1	1	1	1	1	1	0	LSB = 254	
1	1	1	1	1	1	1	1	LSB = 255	
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	Bit name Subaddress =03H	1

PLL REFERENCE COUNTER 2 (MSB)

MSB				-	-		LSB	FUN	ICTION
D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	0	0	0	0	MSB = 0	
0	0	0	0	0	0	0	1	MSB = 256	
0	0	0	0	0	0	1	0	MSB = 512	
1	1	1	1	1	1	0	0	MSB = 64768	
1	1	1	1	1	1	0	1	MSB = 65024	
1	1	1	1	1	1	1	0	MSB = 65280	
1	1	1	1	1	1	1	1	MSB = 65536	
RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	Bit name	Subddress = 04H

fOSC/fREF = LSB + MSB + 1

LOCK DETECTOR & PLL MODE CONTROL

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
						0	0	PLL standby mode
						0	1	PLL AM swallow mode
						1	0	PLL AM direct mode
						1	1	PLL FM mode
				0	0			PD phase difference threshold 10ns
				0	1			PD phase difference threshold 20ns
				1	0			PD phase difference threshold 30ns
				1	1			PD phase difference threshold 40ns
		0	0					Not used in application mode
		0	1					Activation delay = 4 · fref
		1	0					Activation delay = $6 \cdot \text{fref}$
		1	1					Activation delay = $8 \cdot \text{fref}$
	0							Digital output 1 at pin "dout1/inlock"
	1							Inlock information at pin "dout1/inlock"
0								No lock detector controlled chargepump
1								Lock detector controlled chargepump
LDENA	INLOCK	D3	D2	D1	D0	PM1	PM0	Bit name subaddress = 05H

IF COUNTER REFERENCE CONTROL 1 (LSB)

MSB					-		LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1	1	1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255
IRC7	IRC6	IRC5	IRC4	IRC3	IRC2	IRC1	IRC0	Bit name subaddress = 06H

IF COUNTER REFERENCE CONTROL 2 (MSB) AND IF COUNTER MODE SELECT

<u></u>										
MSB						-	LSB	FUNCTION		
D7	D6	D5	D4	D3	D2	D1	D0			
0	0	0	0	0	0	0	0	MSB = 0		
0	0	0	0	0	0	0	1	MSB = 256		
0	0	0	0	0	0	1	0	MSB = 512		
		1	1	1	1	0	1	MSB = 15616		
		1	1	1	1	1	0	MSB = 15872		
		1	1	1	1	1	1	MSB = 16128		
0	0							NOT USED IN APPLICATION MODE		
0	1							IF counter FM mode		
1	0							IF counter AM mode		
1	1							IF counter AM 10.7MHz upconversion mode		
IFCM1	IFCM0	IRC13	IRC12	IRC11	IRC10	IRC9	IRC8	Bit name Subaddress = 07H		

fosc/ftim = LSB + MSB + 1

IF COUNTER CONTROL 1

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
					0	0	0	don't use
					0	0	1	don't use
					0	1	1	EW delta f = ± 60 kHz (FM); ± 1 kHz (AM; AM-UPC)
					1	0	0	EW delta f = ± 12.5 kHz (FM); ± 2 kHz (AM; AM-UPC)
					1	0	1	EW delta f = ± 25 kHz (FM); ± 4 kHz (AM; AM-UPC)
					1	1	0	EW delta f = \pm 50Hz (FM); \pm 8kHz (AM; AM-UPC)
					1	1	1	EW delta f = ± 100 kHz (FM); ± 16 kHz (AM; AM-UPC)
	Х	Х	Х	Х				don't use
0								IF counter disabled / stand by
1								IF counter enabled
FENA	FR3	FR2	FR1	FR0	EW2	EW1	EW0	Bit name subaddress = 08H

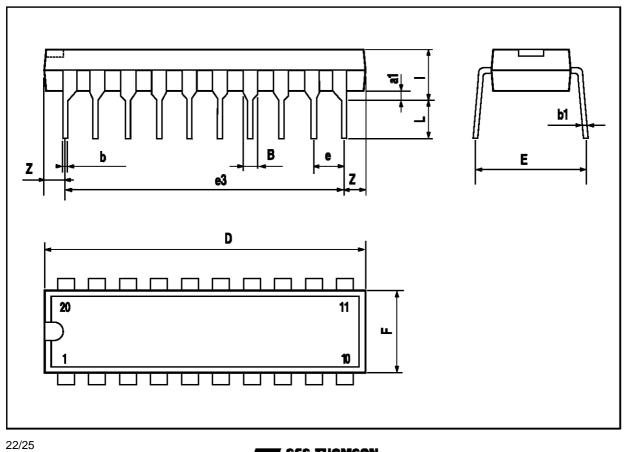
IF COUNTER CONTROL 2

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
			0	0	0	0	0	fcenter = 10.60000MHz (FM) 448KHz (AM) 10.688MHz (AM UPC)
			0	0	0	0	1	fcenter = 10.60625MHz (FM) 449KHz (AM) 10.689MHz (AM UPC)
			0	0	0	1	0	fcenter = 10.61250MHz (FM) 450KHz (AM) 10.690MHz (AM UPC)
			0	0	0	1	1	fcenter = 10.61875MHz (FM) 451KHz (AM) 10.691MHz (AM UPC)
			0	0	1	0	0	fcenter = 10.62500MHz (FM) 452KHz (AM) 10.692MHz (AM UPC)
			0	0	1	0	1	fcenter = 10.63125MHz (FM) 453KHz (AM) 10.693MHz (AM UPC)
			0	0	1	1	0	fcenter = 10.63750MHz (FM) 454KHz (AM) 10.694MHz (AM UPC)
			0	0	1	1	1	fcenter = 10.64375MHz (FM) 455KHz (AM) 10.695MHz (AM UPC)
			0	1	0	0	0	fcenter = 10.65000MHz (FM) 456KHz (AM) 10.696MHz (AM UPC)
			0	1	0	0	1	fcenter = 10.65625MHz (FM) 457KHz (AM) 10.697MHz (AM UPC)
			0	1	0	1	0	fcenter = 10.66250MHz (FM) 458KHz (AM) 10.698MHz (AM UPC)
			0	1	0	1	1	fcenter = 10.66875MHz (FM) 459KHz (AM) 10.699MHz (AM UPC)
			0	1	1	0	0	fcenter = 10.67500MHz (FM) 460KHz (AM) 10.700MHz (AM UPC)
			0	1	1	0	1	fcenter = 10.68125MHz (FM) 461KHz (AM) 10.701MHz (AM UPC)
			0	1	1	1	0	fcenter = 10.68750MHz (FM) 462KHz (AM) 10.702MHz (AM UPC)
			0	1	1	1	1	fcenter = 10.69375MHz (FM) 463KHz (AM) 10.703MHz (AM UPC)
			1	0	0	0	0	fcenter = 10.70000MHz (FM) 464KHz (AM) 10.704MHz (AM UPC)
			1	0	0	0	1	fcenter = 10.70625MHz (FM) 465KHz (AM) 10.705MHz (AM UPC)
			1	0	0	1	0	fcenter = 10.71250MHz (FM) 466KHz (AM) 10.706MHz (AM UPC)
			1	0	0	1	1	fcenter = 10.71875MHz (FM) 467KHz (AM) 10.707MHz (AM UPC)
			1	0	1	0	0	fcenter = 10.72500MHz (FM) 468KHz (AM) 10.708MHz (AM UPC)
			1	0	1	0	1	fcenter = 10.73125MHz (FM) 469KHz (AM) 10.709MHz (AM UPC)
			1	0	1	1	0	fcenter = 10.73750MHz (FM) 470KHz (AM) 10.710MHz (AM UPC)
			1	0	1	1	1	fcenter = 10.74375MHz (FM) 471KHz (AM) 10.711MHz (AM UPC)
			1	1	0	0	0	fcenter = 10.75000MHz (FM) 472KHz (AM) 10.712MHz (AM UPC)
			1	1	0	0	1	fcenter = 10.75625MHz (FM) 473KHz (AM) 10.713MHz (AM UPC)
			1	1	0	1	0	fcenter = 10.76250MHz (FM) 474KHz (AM) 10.714MHz (AM UPC)
			1	1	0	1	1	fcenter = 10.76875MHz (FM) 475KHz (AM) 10.715MHz (AM UPC)
			1	1	1	0	0	fcenter = 10.77500MHz (FM) 476KHz (AM) 10.716MHz (AM UPC)
			1	1	1	0	1	fcenter = 10.78125MHz (FM) 477KHz (AM) 10.717MHz (AM UPC)
			1	1	1	1	0	fcenter = 10.78750MHz (FM) 478KHz (AM) 10.718MHz (AM UPC)
			1	1	1	1	1	fcenter = 10.79375MHz (FM) 479KHz (AM) 10.719MHz (AM UPC)
0	0	0						tsample = 160μs (FM mode); 1ms (AM; AM-UPC)
0	0	1						tsample = 320μs (FM mode); 2ms (AM; AM-UPC)
0	1	0						tsample = 640μs (FM mode); 4ms (AM; AM-UPC)
0	1	1						tsample = 1.280ms (FM mode); 8ms (AM; AM-UPC)
1	0	0						tsample = 2.560ms (FM mode); 16ms (AM; AM-UPC)
1	0	1						tsample = 5.120ms (FM mode); 32ms (AM; AM-UPC)
1	1	0						tsample = 10.240ms (FM mode); 64ms (AM; AM-UPC)
1	1	1						tsample = 20.480ms (FM mode); 128ms (AM; AM-UPC)
IFS2	IFS1	IFS0	CF4	CF3	CF2	CF1	CF0	bit same subaddress = 09H

OSCILLATOR ADJUST

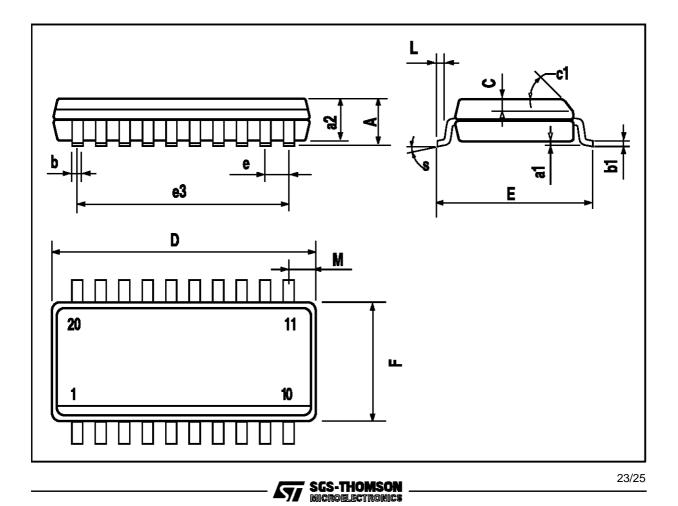
MSB			-				LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
Х	Х	Х	0	0	0	0	0	Cload 1,2 = 3pF
Х	Х	Х	0	0	0	0	1	Cload 1,2 = 4.25pF
Х	Х	Х	0	0	0	1	0	Cload 1,2 = 5.5pF
Х	Х	Х	0	0	0	1	1	Cload 1,2 = 6.75pF
Х	Х	Х	0	0	1	0	0	Cload 1,2 = 8pF
Х	Х	Х	0	0	1	0	1	Cload 1,2 = 9.25pF
Х	Х	Х	0	0	1	1	0	Cload 1,2 = 10.5pF
Х	Х	Х	0	0	1	1	1	Cload 1,2 = 11.75pF
Х	Х	Х	0	1	0	0	0	Cload 1,2 = 13pF
Х	Х	Х	0	1	0	0	1	Cload 1,2 = 14.25pF
Х	Х	Х	0	1	0	1	0	Cload 1,2 = 15.5pF
Х	Х	Х	0	1	0	1	1	Cload 1,2 = 16.75pF
Х	Х	Х	0	1	1	0	0	Cload 1,2 = 18pF
Х	Х	Х	0	1	1	0	1	Cload 1,2 = 19.25pF
Х	Х	Х	0	1	1	1	0	Cload 1,2 = 20.5pF
Х	Х	Х	0	1	1	1	1	Cload 1,2 = 21.75pF
Х	Х	Х	1	0	0	0	0	Cload 1,2 = 23pF
Х	Х	Х	1	0	0	0	1	Cload 1,2 = 24.25pF
Х	Х	Х	1	0	0	1	0	Cload 1,2 = 25.5pF
Х	Х	Х	1	0	0	1	1	Cload 1,2 = 26.75pF
Х	Х	Х	1	0	1	0	0	Cload 1,2 = 28pF
Х	Х	Х	1	0	1	0	1	Cload 1,2 = 29.25pF
Х	Х	Х	1	0	1	1	0	Cload 1,2 = 30.5pF
Х	Х	Х	1	0	1	1	1	Cload 1,2 = 31.75pF
Х	Х	Х	1	1	0	0	0	Cload 1,2 = 33pF
Х	Х	Х	1	1	0	0	1	Cload 1,2 = 34.25pF
Х	Х	Х	1	1	0	1	0	Cload 1,2 = 35.5pF
Х	Х	Х	1	1	0	1	1	Cload 1,2 = 36.75pF
Х	Х	Х	1	1	1	0	0	Cload 1,2 = 38pF
Х	Х	Х	1	1	1	0	1	Cload 1,2 = 39.25pF
Х	Х	Х	1	1	1	1	0	Cload 1,2 = 40.5pF
Х	Х	Х	1	1	1	1	1	Cload 1,2 = 41.75pF
-	-	-	OSC4	OSC3	OSC2	OSC1	OSC0	Bit name Subaddress = 0A Hex

PORT EXTENSION CONTROL

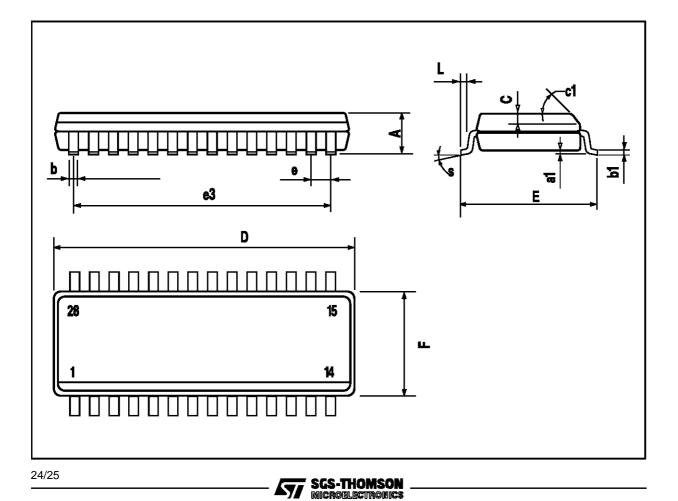

MSB	В						LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
							0	CMOS push pull Low DOUT1	
							1	CMOS push pull High DOUT1	
						0		NPN opencollector DOUT2 inactive	
						1		NPN opencollector DOUT2 active	
					0			NPN opencollector DOUT6 inactive	
					1			NPN opencollector DOUT6 active	
				0				NPN opencollector DOUT5 inactive	
				1				NPN opencollector DOUT5 active	
			0					NPN opencollector DOUT4 inactive	
			1					NPN opencollector DOUT4 active	
		0						NPN opencollector DOUT3 inactive	
		1						NPN opencollector DOUT3 active	
0	0							always "0" in application mode	
-	-	DOUT3	DOUT4	DOUT5	DOUT6	DOUT2	DOUT1	Bit name subaddress = 0BH	

DOUT2... 6 only with 28 pin package

DIP20 PACKAGE MECHANICAL DATA


DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

SGS-THOMSON MICROELECTRONICS


DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.1		0.3	0.004		0.012
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
С		0.5			0.020	
c1			45 ((typ.)		
D	12.6		13.0	0.496		0.512
E	10		10.65	0.394		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.299
L	0.5		1.27	0.020		0.050
М			0.75			0.030
S			n) 8	nax.)		

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.1		0.3	0.004		0.012
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
С		0.5			0.020	
c1			45°	(typ.)		
D	17.7		18.1	0.697		0.713
E	10		10.65	0.394		0.419
е		1.27			0.050	
e3		16.51			0.65	
F	7.4		7.6	0.291		0.299
L	0.4		1.27	0.016		0.050
S			8° (r	max.)		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\odot\,$ 1996 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

